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Summary

Several methods have been proposed for linkage analysis
of complex traits with unknown mode of inheritance.
These methods include the LOD score maximized over
disease models (MMLS) and the “nonparametric” link-
age (NPL) statistic. In previous work, we evaluated the
increase of type I error when maximizing over two or
more genetic models, and we compared the power of
MMLS to detect linkage, in a number of complex modes
of inheritance, with analysis assuming the true model.
In the present study, we compare MMLS and NPL di-
rectly. We simulated 100 data sets with 20 families each,
using 26 generating models: (1) 4 intermediate models
(penetrance of heterozygote between that of the two ho-
mozygotes); (2) 6 two-locus additive models; and (3) 16
two-locus heterogeneity models (admixture a = 1.0, .7,
.5, and .3; a = 1.0 replicates simple Mendelian models).
For LOD scores, we assumed dominant and recessive
inheritance with 50% penetrance. We took the higher
of the two maximum LOD scores and subtracted 0.3 to
correct for multiple tests (MMLS-C). We compared ex-
pected maximum LOD scores and power, using MMLS-
C and NPL as well as the true model. Since NPL uses
only the affected family members, we also performed an
affecteds-only analysis using MMLS-C. The MMLS-C
was both uniformly more powerful than NPL for most
cases we examined, except when linkage information
was low, and close to the results for the true model under
locus heterogeneity. We still found better power for the
MMLS-C compared with NPL in affecteds-only analysis.
The results show that use of two simple modes of in-
heritance at a fixed penetrance can have more power
than NPL when the trait mode of inheritance is complex
and when there is heterogeneity in the data set.
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Introduction

Several methods have been proposed for the linkage
analysis of complex traits, including maximum likeli-
hood–based methods (LOD scores) and nonparametric
approaches, such as affected sib pair (ASP) methods and
the nonparametric linkage (NPL) statistic (Kruglyak et
al. 1996). The maximum likelihood method uses all the
data available and is the most powerful method available
when the true model is used. NPL is less powerful but
does not require specification of a mode of inheritance.

Although specification of a mode of inheritance ap-
pears to be a disadvantage of maximum LOD score
(MLS) methods, it has been shown that LOD scores
calculated with approximated genetic parameters (Mod
score [Clerget-Darpoux et al. 1986], MMLS [Greenberg
1990], or MODs [Hodge and Elston 1994]) are almost
as powerful as LOD scores calculated under the correct
model. One can analyze linkage under two different ge-
netic models and choose the one leading to the higher
LOD score, thus increasing one’s chances of detecting
true linkage with a minimal cost in increased type I error
(Hodge et al. 1997). We proposed that a prudent ap-
proach to linkage analysis in common disease is first to
calculate LOD scores assuming two simple models, dom-
inant and recessive, each with an arbitrary 50% pene-
trance, then to take the higher of the two LOD scores
as the raw test statistic, and, finally, to correct for mul-
tiple tests. We call this test statistic “MMLS-C” (Green-
berg et al. 1998).

However, the question of the power to detect linkage
remained unanswered. In Greenberg et al. (1998), we
compared the power of the MMLS-C with analysis un-
der the true model (i.e., the generating model [GM]).
Analysis under the true model is the best analysis one
can expect and can be considered a “gold standard” that
is unattainable for most common diseases. Using a broad
range of complex genetic models (including intermediate
and two-locus [2L] additive models), we showed that
the MMLS-C approach usually had ∼70% or greater
power to detect linkage compared with the “gold stan-
dard.” The relative power drops only when the power
to detect linkage under the true model becomes low
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Table 1

Penetrances for the Additive2 and Additive3
Models

AA Aa aa

Additive2 penetrance values for:a

BB 1.0 1.0 1.0
Bb 1.0 1.0 .0
bb 1.0 .0 .0

Additive3 penetrance values for:a

BB 1.0 1.0 .0
Bb 1.0 .0 .0
bb .0 .0 .0

a Capital letters denote disease alleles.

Table 2

Penetrances for the Heterogeneity Models D +
D and R + R

AA Aa aa

D � D penetrance values for:a

BB 1.0 1.0 1.0
Bb 1.0 1.0 1.0
bb 1.0 1.0 .0

R � R penetrance values for:a

BB 1.0 1.0 1.0
Bb 1.0 .0 .0
bb 1.0 .0 .0

a Capital letters denote disease alleles; thus, in
the R � R models, A and B are the recessive al-
leles, with frequencies q1 and q2, respectively.

(!50%). That work also confirmed that, when linkage
for a complex model is examined, it is the mode of
inheritance at the linked locus being examined that is
important in detection of linkage, not the overall inher-
itance of the disease. The inheritance at the linked locus
is well approximated by a dominant or recessive model
with reduced penetrance (Greenberg and Hodge 1989).

The present work focuses on the issue of power to
detect linkage for MMLS-C versus NPL. Following the
guidelines and results from our two previous studies, we
first compare the MMLS-C approach with NPL. Second,
we compare the power to detect linkage of MMLS-C
with analysis under the true model in the presence of
heterogeneity. (Heterogeneity models were not examined
in Greenberg et al. [1998].) Third, we perform an af-
fecteds-only comparison between MMLS-C and NPL,
to remove the contribution of unaffected family mem-
bers, thus comparing the power of the two methods on
an equal footing, since NPL uses only affecteds. We were
also interested in determining the reduction in power of
MMLS-C if we used only affected individuals.

In this work we address three questions: (1) What
effect does heterogeneity have on power to detect linkage
by means of MMLS-C? (2) What is the power of NPL
analysis, compared with MMLS-C, for intermediate, ad-
ditive, and heterogeneity models? and (3) If we perform
a comparison using only affected family members, how
well does MMLS-C perform, compared with NPL
analysis?

To answer our questions, we simulated data under a
number of simple and complex models, including inter-
mediate and 2L additive models, as in Greenberg et al.
(1998), as well as 12 new 2L heterogeneity models. We
(1) quantify and compare the power to detect linkage
of MMLS-C versus the “gold standard” of assuming the
true model in the presence of locus heterogeneity, (2)
compare the power to detect linkage for MMLS-C versus
NPL analysis, and (3) compare the power of both sta-
tistics for affecteds-only data when the GMs are inter-
mediate, additive, or 2L heterogeneity.

Methods

GMs

We used a number of GMs, including all those in our
previous work (Greenberg et al. 1998). We examined a
total of 26 GMs: 4 single-locus intermediate, 3 2L Ad-
ditive2, 3 2L Additive3, and 16 2L heterogeneity GMs.
We generated family data for a single marker. We gen-
erated data sets under the following genetic models:

Intermediate Models.—In these models, the hetero-
zygote penetrance, f2, lies between the two homozygote
penetrances, f1 and f3. We set and , andf = 90% f = 01 3

then we varied f2 over 10%, 30%, 50%, and 80%. There
was always one disease locus linked to the marker with
recombination fraction (v) 0.01. The frequency of the
disease allele was .01. These models are denoted Int10,
Int30, Int50, and Int80, respectively.

2L Additive Models.—The Additive2 models require
at least two disease alleles, total, at the two loci, for a
person to be affected. One of the two disease loci is
linked to the marker, with ; the other diseasev = 0.01
locus is unlinked. The disease allele frequency at the
linked locus is fixed at .01, and at the unlinked locus it
is varied over 0.01, 0.05, and 0.10. Table 1 shows the
penetrances for this model.

The Additive3 models require at least three disease
alleles, total, at the two loci, for a person to be affected.
Only one of the two disease loci is linked to the marker,
as in the Additive2 models. Again, the disease allele fre-
quency at the linked locus is fixed at .01, and at the
unlinked locus it is varied over 0.01, 0.05, and 0.10. See
Table 1 for the penetrances for this model.

2L Heterogeneity Models.—Heterogeneity is gener-
ated as a 2L model in which inheritance is either dom-
inant or recessive at both loci, and penetrance is 80%
or 20% at both loci. We did not generate data sets in
which one locus has a dominant and the other a recessive
mode of inheritance. v for the linked locus in the het-
erogeneity models is also 0.01. We generated data in
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Figure 1 Power curves for D50, R50, NPL, TRUE, and MMLS-
C analyses of 100 data sets generated under the Int50 model ( ,f = .91

, ).f = .5 f = 02 3

Table 3

ELODs and ELOD Standard Deviations for the Intermediate and
Additive GMs under Different AMs

GM

AM

MMLS-C NPL TRUE

Intermediate:a

f2 = .1 2.71 (1.24) 2.69 (1.20) 3.57 (1.24)
f2 = .3 3.81 (1.48) 3.06 (1.09) 4.24 (1.34)
f2 = .5 5.67 (1.66) 3.86 (1.43) 5.98 (1.67)
f2 = .8 9.20 (1.80) 5.89 (1.69) 10.51 (2.22)

Additive with two alleles:b

.01 4.13 (1.60) 3.61 (1.54) 4.97 (1.60)

.05 1.64 (1.22) 1.30 (1.05) 1.99 (1.13)

.10 .57 (.69) .49 (.64) 1.19 (1.72)
Additive with three alleles:b

.01 5.99 (2.14) 5.58 (1.75) 6.47 (2.07)

.05 3.57 (1.39) 3.21 (1.42) 4.05 (1.42)

.10 3.78 (1.45) 3.18 (1.10) 4.18 (1.36)

NOTE.—ELOD standard deviations given in parentheses
a Values shown are f2; f1 is fixed at .9; see text.
b Values shown are gene frequencies at the unlinked locus; see text.

which there was linkage between the marker and 100%
(H100), 70% (H70), 50% (H50), and 30% (H30) of
families segregating disease in the general population.
Throughout the present article, we refer to these GMs
by the mode of inheritance, penetrance, and percent of
families with linkage in the data set; for example, D20/
H70 represents a GM with dominant mode of inheri-
tance, 20% penetrance, and 70% families with linkage
in the data set. We refer to the 2L heterogeneity models
as and . This follows the notation of pre-D � D R � R
vious publications (Durner and Greenberg 1992) in
which 2L heterogeneity models are referred to as D �

(i.e., D or D). This is in contrast to DD (D and D),D
which indicates a 2L epistatic model (Greenberg 1981).
The population prevalence for all heterogeneity models
was set at 1%, resulting in different gene frequencies,
depending on the model. For the dominant models with
linkage in 100% of families ( ), the disease allelea = 1
frequency was always .006. When the GM was recessive
and , the disease allele frequency was always .01.a = 1
For the remaining heterogeneity models with , thea � .7
gene frequencies assumed single-locus analysis and were
calculated as follows: , where Q represents theQ = k/f
population frequency of at-risk genotypes, k represents
population prevalence, and f is the generating pene-
trance. Then for models, and2 2Q = 1 � q 7 q D � D1 2

for models, where, in2 2Q = 1 � (1 � q )(1 � q ) R � R1 2

all models, is the frequency of the dominant allele andpi

is the frequency of the recessive allele at the ith locusqi

(see table 2 for the case ).f = 1

Data Simulation

For each of our 26 GMs, 100 data sets of 20 nuclear
families each were simulated. The nuclear families were

simulated according to a well-characterized family-size
distribution (Cavalli-Sforza and Bodmer 1971). All mat-
ings were fully informative for the marker. Families were
selected for linkage analysis if they had at least two
affected children. Data sets were generated by use of our
extensively tested simulation program (Greenberg 1989;
Durner and Greenberg 1992; Greenberg and Doneshka
1996), which uses a random process for each step in the
simulation (e.g., selecting the mating type, family size,
and segregation alleles from parents to offspring). For
the 2L models, we specified the penetrance of each of
the nine possible genotypes.

Analysis Models (AMs)

We analyzed the simulated data for linkage, using two-
point parametric and nonparametric methods. We used
the following statistics:

MMLS-C Analysis.—We chose an arbitrary penetrance
of 50% to analyze our data, as described in the Intro-
duction. Misspecification of the penetrance does not gen-
erally have a strong effect on the LOD score (only on
estimation of v), as long as the dominance is specified
correctly (Greenberg and Hodge 1989; Hodge and Els-
ton 1994). We used the following algorithm:

1. Analyze under the assumption of simple dominant
inheritance, with 50% penetrance (D50).

2. Analyze under the assumption of simple recessive
inheritance, with 50% penetrance (R50).

3. Choose the larger of the two resultant maximum
LOD score (Zmax) values as the MMLS score.

4. Correct for increase in type I error by subtracting
0.3 from the MMLS. The resultant score is the corrected
MMLS score (MMLS-C).
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Table 4

ELODs and ELOD Standard Deviations for the GMs for
Affecteds-Only Analyses

GM

AM

MMLS-C NPL

Intermediate:a

f2 = .1 2.93 (1.14) 2.69 (1.20)
f2 = .3 3.56 (.99) 3.06 (1.09)
f2 = .5 4.78 (1.36) 3.86 (1.43)
f2 = .8 6.77 (1.44) 5.89 (1.69)

Additive with two alleles:b

.01 3.45 (1.38) 3.61 (1.55)

.05 1.30 (1.04) 1.30 (1.05)

.10 .46 (.58) .49 (.64)
Additive with three alleles:b

.01 5.72 (1.89) 5.58 (1.73)

.05 3.38 (1.27) 3.21 (1.42)

.10 3.48 (1.05) 3.18 (1.10)
Homogeneity (a = 1):

D20/H100 3.42 (1.00) 2.74 (1.14)
D80/H100 6.84 (1.58) 6.06 (2.01)
R20/H100 6.89 (1.77) 6.00 (1.53)
R80/H100 9.75 (1.36) 8.12 (1.99)

Heterogeneity (a = .7):
D80/H70 3.15 (1.52) 2.92 (1.53)
R80/H70 5.98 (1.96) 5.13 (1.95)

Heterogeneity (a = .5):
D80/H50 2.05 (1.28) 1.89 (1.28)
R80/H50 3.51 (1.60) 3.06 (1.55)

NOTE.—ELOD standard deviations given in paren-
theses.

a Values shown are f2; f1 is fixed at .9.
b Values shown are gene frequencies at the unlinked

locus.

The LOD scores were calculated by GENEHUNTER
for all single-locus models (D, R , and Int). TMLINK
(Lathrop and Ott 1990) was used to calculate the
“TRUE” (analysis under the true model) for the two-
locus models (additive and heterogeneity). To calculate
MMLS-C for the heterogeneity models, we used the
maximum heterogeneity LOD score of GENEHUNTER,
which is maximized over a.

NPL Analysis.—The NPL method (Kruglyak et al.
1996) can use either NPLall or NPLpairs, both of which
use only affected individuals. We calculate only NPLall.
Kruglyak et al. (1996) constructed the NPL score on the
basis of a score statistic (Whittemore and Halpern
1994a, 1994b). Theoretically, once the score statistic is
standardized with the appropriate weights, it follows a
standard normal distribution (asymptotically). The nor-
malized NPL score for the ith pedigree under the null
hypothesis of no linkage has mean 0 and variance 1.
NPL analysis is implemented in the computer program
GENEHUNTER (Kruglyak et al. 1996).

Asymptotically, the NPL scores follow a normal dis-
tribution, allowing us to transform NPL scores into
LOD-score units: . To confirm the2(NPL) /(4.605) = LOD
assumption of normality, we plotted both the trans-

formed NPL scores and the LOD scores on the hori-
zontal axis of one graph. On a second graph we then
plotted the exact significance levels (P values) obtained
by GENEHUNTER as values on the horizontal axis.
(Figures are not shown but are available on request.)
Since all matings were fully informative for the marker,
we would expect to see approximately the same power
curve in both graphs. For all the GMs, the original NPL
scores followed a normal distribution.

The NPL score calculated by GENEHUNTER was
recognized to be conservative in the presence of missing
data. Kong and Cox (1997) proposed a statistic (KAC)
that has the appropriate significance level regardless of
whether there is missing information. The GENE-
HUNTER PLUS programs implement KAC. Badner et
al. (1998) showed that KAC is more powerful than the
NPL score, depending on how much information is miss-
ing. In our study, we use a fully informative marker, and
all family members are genotyped; therefore, the NPL
has the same power as the KAC.

Affecteds-Only Analysis.—Since the NPL score uses
only information from affected individuals, whereas
LOD-score calculations use all available individuals in
the pedigrees, we would expect some loss of power for
the NPL statistic for that reason alone. Therefore, we
were also interested in determining the reduction in
power of MMLS-C if we used only affected individuals.
To answer this question, we did a second type of com-
parison, coding all unaffected individuals as “unknown”
and evaluating the performance of MMLS-C. We did
this analysis for most of the 26 GMs, except when power
to detect linkage even under the true analysis was low
or when the standard deviation of the expected maxi-
mum LOD scores (ELODs) was high. (The excluded
GMs were and at low penetrances, anda = .70 a = .50
all models with .)a = .30

Results

Calculation and Presentation of Power Results

We report three different test statistics: We focus pri-
marily on the MMLS-C and the NPL in LOD-score
units. In addition, all data sets were analyzed for linkage
under the true model. The maximum LOD score from
this analysis is reported as the TRUE score. We per-
formed two types of analyses, including all family data
and the affecteds-only analyses. For all analyses, ELODs
were calculated by taking the mean of the 100 values
of the particular statistic. We also calculated the stan-
dard deviations of the ELODs.

For the power calculations, the values of each statistic
were ordered from highest to lowest over the 100 data
sets for a given model. Observed power levels, P(Z), were
determined as a function of score for each test statistic
T (T is a maximum Zmax score, NPL score, or maximum



Abreu et al.: Power Comparisons between LOD and NPL Scores 851

Figure 2 Power curves for D50, R50, NPL, TRUE, and MMLS-
C analyses of 100 data sets generated under the Additive3 model. The
unlinked gene frequency is .01.

Table 5

ELODs and ELOD Standard Deviations for the 2L Heterogeneity
GMs under Different AMs

GM

AM

MMLS-C NPL TRUE

Homogeneity (a = 1):
D20/H100 3.17 (1.36) 2.74 (1.14) 3.88 (1.09)
D80/H100 9.35 (2.00) 6.06 (2.01) 10.72 (2.47)
R20/H100 6.89 (2.13) 6.00 (1.53) 7.48 (1.89)
R80/H100 12.47 (1.85) 8.12 (1.99) 13.52 (2.21)

Homogeneity (a = .7):
D20/H70 1.63 (1.09) 1.60 (1.03) 1.73 (.96)
D80/H70 4.74 (1.96) 2.92 (1.53) 5.52 (2.11)
R20/H70 2.54 (1.46) 2.37 (1.50) 2.71 (1.41)
R80/H70 7.56 (2.38) 5.13 (1.95) 8.15 (2.54)

Homogeneity (a = .5):
D20/H50 .94 (.91) 1.05 (.89) .97 (.70)
D80/H50 3.20 (1.78) 1.89 (1.28) 3.69 (1.94)
R20/H50 1.62 (1.18) 1.53 (1.09) 1.70 (1.00)
R80/H50 4.42 (1.81) 3.06 (1.55) 4.69 (1.82)

NOTE.—ELOD standard deviations given in parentheses.

HLOD score), as follows: number of data setsP(Z) { (
yielding , where N represents the number ofT � Z)/N
data sets generated for the simulation (i.e., 100).

Figures 1–4 show selected power curves for MMLS-
C and NPL, as well as curves for the corresponding D50
and R50 analyses (i.e., without correction for multiple
testing) for comparison. In the graphs, power is plotted
as a function of LOD scores and NPL scores. For ex-
ample, if a LOD score of 3.0 (corresponding to an NPL
score of 3.7) on the X-axis shows power of 0.8 on the
Y-axis, this means that 80% of the 20-family data sets
reached a LOD score of 3.0 or higher.

We now describe the results for the different gener-
ating models.

Intermediate Models.—For the intermediate models,
as the heterozygote penetrance rises, MMLS-C consis-
tently outperforms NPL, reaching a difference in ELODs
of 3.3 LOD-score units in 20-family data sets when the
GM is Int80. Table 3 presents the ELODs and the re-
spective ELOD standard deviation for MMLS-C, NPL,
and TRUE scores for the intermediate and additive GMs.
(We include the TRUE results for the intermediate and
additive models for ease of comparison; however, these
comparisons were already made in Greenberg et al.
1998.) The NPL ELODs are almost as good as MMLS-
C (ratio NPL:MMLS� ) when the power to de-C = 0.99
tect linkage was low (only 64%) even with the “gold
standard” analysis, but this ratio drops to 0.64 as the
information for linkage increases (table 3). For example,
when the f2 penetrance is high for intermediate models,
the power to detect linkage is high. At low f2 penetrance,
the power to detect linkage is low for both methods,
but, for all thresholds we examined, MMLS-C performs
better than NPL. Figure 1 shows the power curves for
one intermediate model, Int50, where, for a threshold

of 3.0 (P value = .001), the power for MMLS-C is 95%,
and for NPL 64%. For a threshold of 4.0 there was a
drop in power of ∼50% for NPL compared with MMLS-
C.

Table 4 shows ELODs and standard deviations (in
parentheses) for the two statistics for complex models
in an affecteds-only comparison. The NPL analysis re-
mained the same as in table 3. Table 4 shows that, for
the intermediate models, the differences in ELODs be-
tween the two statistics are smaller than when all family
members are included. The ELOD differences between
the statistics range from 0.23 to 0.88. But as the het-
erozygote penetrance increases, so does the difference in
ELODs of MMLS-C and NPL. Although, for the inter-
mediate models, the unaffected individuals contribute
little information for linkage, there is still an increase in
ELOD of 24% under MMLS-C compared with NPL
(table 4) when the GM is Int50.

2L Additive Models: Additive2 Models.—For the Ad-
ditive2 model, when both loci have the same gene fre-
quency (.01), MMLS-C gives an ELOD of 4.13, whereas
NPL yields an ELOD of 3.61 (table 3). For the Additive2
model, the power to detect linkage decreases as the fre-
quency of the disease allele at the unlinked locus in-
creases. As the information for linkage decreases, we
expect that the power for both MMLS-C and NPL will
be similar, since the effect of the model assumptions on
the analysis will be small. This is what we observe. When
the gene frequency at the unlinked locus for the Addi-
tive2 models is .05 or .1, the ELODs for MMLS-C and
NPL have similar values. This similarity arises from the
fact that there is not much information for linkage in
these models. The standard deviations of the ELODs for
MMLS-C and NPL under these two models are relatively
large (close to the corresponding ELOD). The ELODs
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Table 6

Power to Achieve a Given Z Value, under the MMLS-C and True Models, and MMLS-C:TRUE
(M:T) Ratio under Locus Heterogeneity

MODEL

POWER TO ACHIEVE Z = 3.0 POWER TO ACHIEVE Z = 4.0

MMLS-C TRUE M:T Ratio MMLS-C TRUE M:T Ratio

Homogeneity (a = 1):
D20/H100 .55 .80 .69 .27 .48 .56
D80/H100 1.00 1.00 1.00 1.00 1.00 1.00
R20/H100 .98 1.00 .90 .90 .96 .94
R80/H100 1.00 1.00 1.00 1.00 1.00 1.00

Heterogeneity (a = .7):
D20/H70 .12 .13 .92 .04 .03 1.34a

D80/H70 .83 .88 .94 .56 .77 .73
R20/H70 .33 .42 .79 .16 .21 .77
R80/H70 .98 .98 1.00 .92 .95 .97

Heterogeneity (a = .5):
D20/H50 .03 .10 .30a .01 .02 .50a

D80/H50 .47 .57 .83 .29 .40 .73
R20/H50 .12 .10 1.20a .04 .03 1.34a

R80/H50 .80 .82 .98 .51 .63 .80

a Little information for linkage. Power under the true model �10%.

for the true model under these two models are also less
than 3.0. Thus, the power to detect linkage under any
analysis conditions is relatively low for these GMs. There
is little difference in the power of NPL and MMLS-C
for affecteds-only when the GMs are additive (table 4).

2L Additive Models: Additive3 Models.—When three
disease alleles are required for an individual to be af-
fected, figure 2 suggests that recessive inheritance pro-
vides a good approximation to this model with disease
allele frequency at the unlinked locus .01, the same as
at the linked locus (i.e., the gene frequency combination
.01,.01). As the frequency of the disease allele at the
unlinked locus increases to .05, we see a drop in power.
At (.01,.1), the ELODs increase again. For this gene
frequency combination, dominant inheritance seems to
provide a better description of the inheritance model
(data not shown).

The difference in ELODs between MMLS-C and NPL
is not very great in this model. MMLS-C has higher
ELODs by approximately half a LOD-score unit, com-
pared with NPL, and 8% greater power to detect linkage
(fig. 2). When the gene frequency of the unlinked locus
is .1, the ELOD for MMLS-C is 3.78, versus 3.18 when
the NPL test statistic is used, as shown in table 3. The
ELODs ratio for NPL versus MMLS-C ranges from 85%
to 93%.

2L Heterogeneity Models.—For the models with het-
erogeneity, the power to detect linkage for all analysis
methods decreases as the percentage of families with
linkage in the data set decreases, as expected. Also, for
all a levels, as the generating penetrance increases, the
MMLS-C and NPL scores increase.

The ELODs for the GMs under locus heterogeneity
are presented in table 5. When the GM is D20/H100,

the ELOD from MMLS-C is 3.17, versus 2.74 for the
NPL statistic and 3.88 for TRUE. When the generating
penetrance is 80%, the difference between MMLS-C and
NPL is ∼3.3 LOD-score units (table 5).

Table 6 compares the power achieved by the MMLS-
C versus the TRUE statistics, at LOD-score thresholds
of 3.0 and 4.0. Table 6 also shows the ratio of the
MMLS-C power to the TRUE power in the presence of
locus heterogeneity. The MMLS-C approach usually had
�70% of the power to detect linkage compared with
the power obtained with the TRUE analysis. When the
power to detect linkage under the GM is !50%, the
power of MMLS-C drops to 56%.

Table 7 presents the power to achieve Z of 3.0 and
4.0 by MMLS-C and NPL analyses, for all GMs. There
is a corresponding difference in power of ∼40% when
NPL versus MMLS-C is used for the D20/H100 GMs;
55% of data sets reach a threshold of 3.0 when MMLS-
C is used; 33% of data sets reach this level when NPL
is used.

For the recessive models, both statistics are robust
compared with the TRUE statistic. For R20/H100, when
ELODs for NPL are compared with ELODs for MMLS-
C, we see a ratio of 0.87 (table 5). For the GM R80/
H100, there is 100% power to detect linkage if one uses
MMLS-C or NPL for 3.0 and 4.0 thresholds (table 7).
However, for higher heterogeneity LOD-score thresh-
olds, MMLS-C has better power; for example, if we look
at a cutoff , the power of NPL drops to 90%,Z = 5.0
whereas, with the MMLS-C, all data sets still reach this
threshold ( ).power = 100%

For the D80/H70 model, the ELOD for MMLS-C is
4.74 versus the 2.92 for the ELOD of NPL. Figures 3a
and 3b represent the power obtained with MMLS-C and



Abreu et al.: Power Comparisons between LOD and NPL Scores 853

Table 7

Power to Achieve a Given Z Value, for NPL, MMLS-C, NPL:MMLS-C (N:M) Ratio

MODEL

POWER TO ACHIEVE Z = 3.0 POWER TO ACHIEVE Z = 4.0

MMLS-C NPL N:M Ratio MMLS-C NPL N:M Ratio

Intermediate:a

f2 = .1 .41 .35 .85 .16 .16 1.00
f2 = .3 .71 .49 .69 .44 .21 .48
f2 = .5 .95 .64 .67 .84 .40 .48
f2 = .8 1.00 .95 .95 1.00 .84 .84

Additive with two alleles:b

.01 .80 .58 .73 .49 .37 .76

.05 .17 .08 .47 .03 .02 .67

.10 )d )d )d )d )d )d

Additive with three alleles:b

.01 .92 .96 1.04 .85 .78 .92

.05 .63 .56 .89 .39 .30 .77

.10 .68 .56 .82 .43 .24 .56
Homogeneity (a = 1):

D20/H100 .55 .33 .60 .27 .12 .45
D80/H100 1.00 .94 .94 1.00 .84 .84
R20/H100 .98 .98 1.00 .90 .90 1.00
R80/H100 1.00 1.00 1.00 1.00 .99 .99

Heterogeneity (a = .7):
D20/H70 .12 .13 1.09c .04 )d )d

D80/H70 .83 .42 .51 .56 .21 .38
R20/H70 .33 .31 .94 .16 .18 1.10
R80/H70 .98 1.00 1.02 .92 .99 1.10

Heterogeneity (a = .5):
D20/H50 .03 .06 2.00c .01 )d )d

D80/H50 .47 .18 .38 .29 .06 .21
R20/H50 .12 .10 .83c .04 .04 1.00
R80/H50 .80 .52 .65 .51 .26 .51

a Values shown are f2; f1 is fixed at .9.
b Values shown are gene frequencies at the unlinked locus.
c Little information for linkage. Power under the true model �10%.
d Power = 0%.

NPL for R80/H100 and R80/H70. We see that the power
difference between MMLS-C and NPL decreases as a

decreases. In both figures, we can see that the MMLS-
C outperforms NPL.

We see a similar pattern for the H50 dominant and
recessive with 80% penetrance (D80/H50 and R80/H50)
models. For the low-penetrance models in which a =

, the maximum difference between MMLS-C and0.5
NPL is small and the information for linkage is low
(standard deviation of ELOD ≈ 0.9). Both statistics lack
power to detect linkage. All models in H30 gave small
ELODs with high standard deviations and low power
to detect linkage, as we expect when there is little in-
formation for linkage.

For the affecteds-only analysis, when the GM is ho-
mogeneous ( ), the simple Mendelian D20 has ana = 1
ELOD for MMLS-C of 3.42, versus an ELOD of 2.74
for the NPL statistic. For D80/H70 the ELOD for the
true model is 3.32. The ELOD for MMLS-C was 3.15
and, for NPL, 2.92. Thus, use of NPL analysis would
lead to a slight loss in power to detect linkage. When

the GM is recessive with 80% penetrance under ho-
mogeneity ( ) and heterogeneity ( ), we ob-a = 1 a = .7
served high power for both NPL and MMLS-C in the
affecteds-only analysis (fig. 4). For the affecteds-only
analysis under heterogeneity, the ELODs for MMLS-C
are higher than for NPL; the difference ranged from 0.2
to 0.9, as shown in table 4. We also verify that, with
linkage in 50% of families, the power to detect linkage
is low and MMLS-C and NPL have very close ELODs,
with standard deviations of 1.28.

Discussion

The purpose of this simulation study was to answer
three questions: First, how does MMLS-C perform com-
pared with the TRUE analysis in the presence of locus
heterogeneity? Second, how does the power of NPL
analysis compare with the power of the MMLS-C anal-
ysis for complex models and for heterogeneity models?
Third, when only affected individuals are included in the
analysis, how does MMLS-C perform compared with
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Figure 3 Power curves for D50, R50, NPL, TRUE, and MMLS-C analyses of 100 data sets generated under locus heterogeneity: a, GM
R80, . b, GM R80, .a = 1 a = .7

Figure 4 Power curves for MMLS-C and NPL analyses of 100
data sets generated as R80 with and with for affecteds-a = 1 a = .7
only analyses.

NPL analysis? We have shown that, for the GMs we
examined, the MMLS-C approach does not substantially
decrease the power to detect linkage compared with the
true model, even in the presence of heterogeneity. The
general pattern was that NPL had lower ELODs than
the MMLS-C under all the models examined. In the
presence of locus heterogeneity, as the information for
linkage in a data set increases, the difference between
MMLS-C and NPL increases, whether or not unaffected
family members are included. MMLS-C and NPL had
approximately equal power to detect linkage when there
was very little information for linkage (fig. 5).

When the TRUE had power !85%, the general pattern

for models under locus heterogeneity was that NPL had
less power than MMLS-C. As the proportion of families
with linkage increases (i.e., as a approaches 1), the dif-
ference in ELODs for MMLS-C and NPL also increases
(fig. 4 and fig. 5). Performance of the MMLS-C analysis
with affecteds only lowers the power of the analysis
compared with analysis that includes unaffected indi-
viduals. As table 4 shows, the MMLS-C power is still
higher than that of NPL for many (but not all) of the
models we examined.

We also compared the power of MMLS-C to detect
linkage when all individuals are included with the power
of MMLS-C when only affected individuals are included
(table 8). When penetrance was high, excluding the un-
affected individuals lowered the power on average by
∼25%. In the two cases (GM is Int10 or D20/H100) in
which the power was slightly higher for the affecteds-
only analysis, the ELODs had a large standard deviation
(see table 8).

In the present study, we simulated 26 different models,
to look at the power to detect linkage for MMLS-C
versus NPL. In Greenberg et al. (1998), we reported only
results for . In fact, we had also examinedv = 0.0 v =

and . There was no inherent difference in0.01 v = 0.05
the behavior of MMLS-C, except that, of course, the
LOD scores were higher when v was smaller. Our focus
in the present study is on the relative power of MMLS-
C and NPL. Therefore, we did not explore the v for this
study. Also, because of the large number of models, we
wanted to keep to a reasonable number of calculations.

Note that we investigated only nuclear families. Vie-
land et al. (1992, 1993) looked at the analysis of 2L
models, using single-locus analysis for nuclear families
and pedigrees. Given the results from the Vieland et al.
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Figure 5 Expected HLOD scores for TRUE, MMLS-C, and NPL analyses of 100 data sets generated under locus heterogeneity: a, GM
D80 at , .7, .5, and .3. b, GM D20 at , .7, .5, and .3. c, GM R80 at , .7, .5, and .3. d, GM R20 at , .7, .5, and .3.a = 1 a = 1 a = 1 a = 1

studies, we would not expect fundamental differences
for nuclear families versus pedigrees.

There are currently no means to incorporate hetero-
geneity in “model-free” analysis. Therefore, model-free
methods will be weakened in their ability to detect link-
age in the presence of heterogeneity. In contrast, LOD-
score methods allow us to estimate a (i.e., the percentage
of families with linkage in the data set). When looking
at heterogeneity models, we maximized the likelihood
with respect to a (HLOD), but we are simultaneously
maximizing the LOD score over v. This could be viewed
as introducing another degree of freedom (Ott 1991)
and therefore requiring further correction of the signif-
icance level. On the other hand, in a two-point analysis,
the estimates of v and a are highly correlated, so perhaps
maximizing over a does not add a degree of freedom.

To get an idea of the distribution of the HLOD, we
compared HLOD with different x2 curves. We simulated
data sets with no linkage under two dominant and two
recessive 2L heterogeneity models. Data sets were ana-
lyzed for linkage by maximizing the HLOD over dom-
inance model. The resulting significance levels very
closely matched a two-sided x2

1, just as the “raw” (un-
corrected) MMLS curves had done (Hodge et al. 1997).
(Figure not shown but available on request.) This means
that, for a given type I error, an investigator would need

to increase the LOD score used as a cutoff by ≈ 0.3
LOD-score units—the same correction as for MMLS-C;
that is, an additional correction for type I error is not
needed for maximization of HLOD. Therefore, since the
maximum HLOD distribution follows approximately
the same distribution as the maximum LOD distribu-
tion, we use the same scale and threshold LOD scores
in our tables and figures.

As expected, the power to detect significant evidence
of linkage is reduced in the presence of heterogeneity.
We found that the power is reduced by 2%–90% (not
shown), depending on both the amount of heterogeneity
in the data set and the penetrance of the disease. The
combination of low penetrance and even a moderate
level of heterogeneity can noticeably reduce power. Fig-
ures 5a and 5c show that, even when the MMLS-C has
more power, there is reasonably good power to detect
linkage for both MMLS-C and NPL when penetrance
is high. Figures 5b and 5d show that the power to detect
linkage is low when and there is low pene-a � 70%
trance. Figures 5a and 5c also show that, as the percent
of families with linkage in the data set increases, so does
the difference in the power to detect linkage for MMLS-
C and NPL.

In complex diseases, in which the trait may be influ-
enced by several different loci, at each locus, either one
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Table 8

Comparison of MMLS-C ELODs for the GMs when Unaffected
Individuals Are Included and for Affecteds-only Analyses

GM

ELODS

Affecteds Only All Affecteds:All

Intermediate:a

f2 = .1 2.93c 2.71c 1.08
f2 = .3 3.56 3.81 .94
f2 = .5 4.78 5.67 .84
f2 = .8 6.77 9.20 .74

Additive with two alleles:b

.01 3.45 4.13 .84

.05 1.30 1.64 .80

.10 .46 .57 .81
Additive with three alleles:b

.01 5.72 5.99 .96

.05 3.38 3.57 .95

.10 3.48 3.78 .92
Heterogeneity (a = 1):

D20/H100 3.42c 3.17c 1.08
D80/H100 6.84 9.35 .74
R20/H100 6.89 6.89 1.00
R80/H100 9.75 12.47 .78

Heterogeneity (a = .7):
D80/H70 3.15 4.74 .67
R80/H70 5.98 7.56 .79

Heterogeneity (a = .5):
D80/H50 2.05 3.20 .64
R80/H50 3.51 4.42 .79

a Values shown are f2; f1 is fixed at .9.
b Values shown are gene frequencies at the unlinked locus.
c Large standard deviation of ELOD � 1.2.

or both alleles contribute to the trait expression, thus
approximating either dominant or recessive inheritance
at the specific locus. Our previous work (Greenberg et
al. 1998) and several other studies (Greenberg 1989;
Vieland et al. 1992; Goldin and Weeks 1993; Durner et
al. 1999) showed that the important assumption in the
analysis is the mode of inheritance at the specific disease
locus being analyzed. The action of the other locus can
be incorporated into the reduced penetrance (Greenberg
and Hodge 1989). Greenberg and Berger (1994) inves-
tigated the reliability of a method for determining the
mode of inheritance from the linkage data. The method
examined the difference between the maximum LOD
scores calculated under the dominant and recessive AMs.
They showed that, if this difference was �1.5, then the
higher of the two maximum LOD scores reflected the
correct mode of inheritance with high reliability. A dif-
ference of �2.5 essentially guarantees a correct mode of
inheritance inference. Therefore, one can gain knowl-
edge about the mode of inheritance of the disease, using
the MMLS-C approach.

For the Additive3 model, we saw that the gene fre-
quency at the unlinked locus determined which assumed
mode of inheritance at the linked locus led to the higher
LOD score. When the model at the linked locus is mis-

specified, the LOD score drops, leading to a loss of
power to detect linkage. In Durner et al. (1999), the
authors carefully examined the work of Dizier et al.
(1996). Dizier et al. (1996) analyzed linkage data from
complex inheritance both with ASP and with LOD
scores. But the LOD-score analysis used genetic param-
eters derived from a segregation analysis. Dizier et al.
(1996) concluded that there are certain models in which
ASP analysis has more power to detect linkage than LOD
scores. However, Durner et al. (1999) showed that, had
Dizier et al. (1996) used the MMLS-C analysis instead
of using parameters from a segregation analysis, they
would have had more power to detect linkage using
LOD scores than either ASP or NPL.

Various studies have compared the power of different
linkage methods with the NPL statistic. Lin et al. (1997)
evaluated the performance of NPL under single Men-
delian models and models with heterogeneity and con-
cluded that, under a model with a major gene effect,
likelihood-based methods (MMLS) tend to be more
powerful. However, for a minor gene effect, the NPL
statistic is generally superior to the other tests. Davis
and Weeks (1997) also examined a variety of statistics
for linkage analysis with different GMs and family struc-
tures. They showed that NPL had lower power com-
pared with other methods when there was heterogeneity
in the data and when families were ascertained through
two or more affected children.

We have focused on two-point parametric versus two-
point “model-free” analysis. We looked at some specific
GMs (one-locus and 2L), trying to cover a broad range
of genetic models. We concluded that MMLS-C has bet-
ter power than NPL under the range of GMs we ex-
amined. Our intention was to show that parametric
methods remain a powerful tool even when the under-
lying genetic model is unknown. However, there might
be circumstances in which model-free methods will be
better suited for a genetic analysis than the parametric
methods. Our current work in preparation looks into
power comparisons between MMLS-C and NPL for
multipoint analysis for the same GMs. Our results thus
far demonstrate that the conclusions of this work apply
equally well to multipoint analysis.

We conclude that

1. Our proposed statistic MMLS-C is simple and ro-
bust, and its power to detect linkage is often almost as
great as that obtained with the true model.

2. MMLS-C has more power than NPL for complex
models.

3. MMLS-C yields better power to detect linkage than
NPL under heterogeneity ( ).a ( 1

4. MMLS-C has more power than NPL when only
affecteds are analyzed. For the affecteds-only analysis,
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the MMLS-C was uniformly more powerful than NPL
for most of the cases we examined.

5. As information for linkage goes down, so does the
difference between MMLS-C and NPL.

6. When only affected family members were analyzed,
the expected LOD score was on average ∼25% lower
than when we included the unaffected family members.

7. The inheritance at one locus approximates either
dominant or recessive inheritance.

An advantage of MMLS-C is that it provides infor-
mation about the mode of inheritance at the locus being
tested, whereas NPL does not. The results show that our
approach, using two simple modes of inheritance at a
fixed penetrance, can have more power than NPL when
the trait mode of inheritance is complex and in the pres-
ence of locus heterogeneity. Mendelian models, despite
their simplicity, provide a reasonable approximation for
a locus-by-locus search for disease genes.
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